metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C23.14D28, C24.10D14, (C2×C28).51D4, C2.6(C28⋊7D4), (C22×C14).65D4, (C22×C4).91D14, C14.58(C4⋊D4), C22.125(C2×D28), C7⋊4(C23.11D4), C14.C42⋊15C2, C2.6(C28.17D4), C14.38(C4.4D4), C22.98(C4○D28), (C23×C14).36C22, (C22×C28).60C22, C23.370(C22×D7), C14.16(C42⋊2C2), C22.96(D4⋊2D7), (C22×C14).328C23, C2.8(C23.18D14), C14.73(C22.D4), C2.16(C22.D28), C2.14(C23.D14), (C22×Dic7).42C22, (C2×C4⋊Dic7)⋊12C2, (C2×C14).432(C2×D4), (C2×C4).30(C7⋊D4), (C2×C22⋊C4).15D7, (C14×C22⋊C4).16C2, C22.126(C2×C7⋊D4), (C2×C23.D7).15C2, (C2×C14).144(C4○D4), SmallGroup(448,487)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C23.14D28
G = < a,b,c,d,e | a2=b2=c2=d28=1, e2=c, ab=ba, dad-1=ac=ca, eae-1=abc, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede-1=d-1 >
Subgroups: 692 in 170 conjugacy classes, 59 normal (27 characteristic)
C1, C2 [×3], C2 [×4], C2 [×2], C4 [×7], C22 [×3], C22 [×4], C22 [×10], C7, C2×C4 [×2], C2×C4 [×17], C23, C23 [×2], C23 [×6], C14 [×3], C14 [×4], C14 [×2], C22⋊C4 [×6], C4⋊C4 [×2], C22×C4 [×2], C22×C4 [×4], C24, Dic7 [×4], C28 [×3], C2×C14 [×3], C2×C14 [×4], C2×C14 [×10], C2.C42 [×3], C2×C22⋊C4, C2×C22⋊C4 [×2], C2×C4⋊C4, C2×Dic7 [×12], C2×C28 [×2], C2×C28 [×5], C22×C14, C22×C14 [×2], C22×C14 [×6], C23.11D4, C4⋊Dic7 [×2], C23.D7 [×4], C7×C22⋊C4 [×2], C22×Dic7 [×4], C22×C28 [×2], C23×C14, C14.C42, C14.C42 [×2], C2×C4⋊Dic7, C2×C23.D7 [×2], C14×C22⋊C4, C23.14D28
Quotients: C1, C2 [×7], C22 [×7], D4 [×4], C23, D7, C2×D4 [×2], C4○D4 [×5], D14 [×3], C4⋊D4, C22.D4 [×3], C4.4D4, C42⋊2C2 [×2], D28 [×2], C7⋊D4 [×2], C22×D7, C23.11D4, C2×D28, C4○D28, D4⋊2D7 [×4], C2×C7⋊D4, C23.D14 [×2], C22.D28 [×2], C28⋊7D4, C23.18D14, C28.17D4, C23.14D28
(1 15)(2 219)(3 17)(4 221)(5 19)(6 223)(7 21)(8 197)(9 23)(10 199)(11 25)(12 201)(13 27)(14 203)(16 205)(18 207)(20 209)(22 211)(24 213)(26 215)(28 217)(29 128)(30 44)(31 130)(32 46)(33 132)(34 48)(35 134)(36 50)(37 136)(38 52)(39 138)(40 54)(41 140)(42 56)(43 114)(45 116)(47 118)(49 120)(51 122)(53 124)(55 126)(57 176)(58 101)(59 178)(60 103)(61 180)(62 105)(63 182)(64 107)(65 184)(66 109)(67 186)(68 111)(69 188)(70 85)(71 190)(72 87)(73 192)(74 89)(75 194)(76 91)(77 196)(78 93)(79 170)(80 95)(81 172)(82 97)(83 174)(84 99)(86 156)(88 158)(90 160)(92 162)(94 164)(96 166)(98 168)(100 142)(102 144)(104 146)(106 148)(108 150)(110 152)(112 154)(113 127)(115 129)(117 131)(119 133)(121 135)(123 137)(125 139)(141 175)(143 177)(145 179)(147 181)(149 183)(151 185)(153 187)(155 189)(157 191)(159 193)(161 195)(163 169)(165 171)(167 173)(198 212)(200 214)(202 216)(204 218)(206 220)(208 222)(210 224)
(1 32)(2 33)(3 34)(4 35)(5 36)(6 37)(7 38)(8 39)(9 40)(10 41)(11 42)(12 43)(13 44)(14 45)(15 46)(16 47)(17 48)(18 49)(19 50)(20 51)(21 52)(22 53)(23 54)(24 55)(25 56)(26 29)(27 30)(28 31)(57 86)(58 87)(59 88)(60 89)(61 90)(62 91)(63 92)(64 93)(65 94)(66 95)(67 96)(68 97)(69 98)(70 99)(71 100)(72 101)(73 102)(74 103)(75 104)(76 105)(77 106)(78 107)(79 108)(80 109)(81 110)(82 111)(83 112)(84 85)(113 200)(114 201)(115 202)(116 203)(117 204)(118 205)(119 206)(120 207)(121 208)(122 209)(123 210)(124 211)(125 212)(126 213)(127 214)(128 215)(129 216)(130 217)(131 218)(132 219)(133 220)(134 221)(135 222)(136 223)(137 224)(138 197)(139 198)(140 199)(141 189)(142 190)(143 191)(144 192)(145 193)(146 194)(147 195)(148 196)(149 169)(150 170)(151 171)(152 172)(153 173)(154 174)(155 175)(156 176)(157 177)(158 178)(159 179)(160 180)(161 181)(162 182)(163 183)(164 184)(165 185)(166 186)(167 187)(168 188)
(1 204)(2 205)(3 206)(4 207)(5 208)(6 209)(7 210)(8 211)(9 212)(10 213)(11 214)(12 215)(13 216)(14 217)(15 218)(16 219)(17 220)(18 221)(19 222)(20 223)(21 224)(22 197)(23 198)(24 199)(25 200)(26 201)(27 202)(28 203)(29 114)(30 115)(31 116)(32 117)(33 118)(34 119)(35 120)(36 121)(37 122)(38 123)(39 124)(40 125)(41 126)(42 127)(43 128)(44 129)(45 130)(46 131)(47 132)(48 133)(49 134)(50 135)(51 136)(52 137)(53 138)(54 139)(55 140)(56 113)(57 142)(58 143)(59 144)(60 145)(61 146)(62 147)(63 148)(64 149)(65 150)(66 151)(67 152)(68 153)(69 154)(70 155)(71 156)(72 157)(73 158)(74 159)(75 160)(76 161)(77 162)(78 163)(79 164)(80 165)(81 166)(82 167)(83 168)(84 141)(85 189)(86 190)(87 191)(88 192)(89 193)(90 194)(91 195)(92 196)(93 169)(94 170)(95 171)(96 172)(97 173)(98 174)(99 175)(100 176)(101 177)(102 178)(103 179)(104 180)(105 181)(106 182)(107 183)(108 184)(109 185)(110 186)(111 187)(112 188)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196)(197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224)
(1 162 204 77)(2 161 205 76)(3 160 206 75)(4 159 207 74)(5 158 208 73)(6 157 209 72)(7 156 210 71)(8 155 211 70)(9 154 212 69)(10 153 213 68)(11 152 214 67)(12 151 215 66)(13 150 216 65)(14 149 217 64)(15 148 218 63)(16 147 219 62)(17 146 220 61)(18 145 221 60)(19 144 222 59)(20 143 223 58)(21 142 224 57)(22 141 197 84)(23 168 198 83)(24 167 199 82)(25 166 200 81)(26 165 201 80)(27 164 202 79)(28 163 203 78)(29 185 114 109)(30 184 115 108)(31 183 116 107)(32 182 117 106)(33 181 118 105)(34 180 119 104)(35 179 120 103)(36 178 121 102)(37 177 122 101)(38 176 123 100)(39 175 124 99)(40 174 125 98)(41 173 126 97)(42 172 127 96)(43 171 128 95)(44 170 129 94)(45 169 130 93)(46 196 131 92)(47 195 132 91)(48 194 133 90)(49 193 134 89)(50 192 135 88)(51 191 136 87)(52 190 137 86)(53 189 138 85)(54 188 139 112)(55 187 140 111)(56 186 113 110)
G:=sub<Sym(224)| (1,15)(2,219)(3,17)(4,221)(5,19)(6,223)(7,21)(8,197)(9,23)(10,199)(11,25)(12,201)(13,27)(14,203)(16,205)(18,207)(20,209)(22,211)(24,213)(26,215)(28,217)(29,128)(30,44)(31,130)(32,46)(33,132)(34,48)(35,134)(36,50)(37,136)(38,52)(39,138)(40,54)(41,140)(42,56)(43,114)(45,116)(47,118)(49,120)(51,122)(53,124)(55,126)(57,176)(58,101)(59,178)(60,103)(61,180)(62,105)(63,182)(64,107)(65,184)(66,109)(67,186)(68,111)(69,188)(70,85)(71,190)(72,87)(73,192)(74,89)(75,194)(76,91)(77,196)(78,93)(79,170)(80,95)(81,172)(82,97)(83,174)(84,99)(86,156)(88,158)(90,160)(92,162)(94,164)(96,166)(98,168)(100,142)(102,144)(104,146)(106,148)(108,150)(110,152)(112,154)(113,127)(115,129)(117,131)(119,133)(121,135)(123,137)(125,139)(141,175)(143,177)(145,179)(147,181)(149,183)(151,185)(153,187)(155,189)(157,191)(159,193)(161,195)(163,169)(165,171)(167,173)(198,212)(200,214)(202,216)(204,218)(206,220)(208,222)(210,224), (1,32)(2,33)(3,34)(4,35)(5,36)(6,37)(7,38)(8,39)(9,40)(10,41)(11,42)(12,43)(13,44)(14,45)(15,46)(16,47)(17,48)(18,49)(19,50)(20,51)(21,52)(22,53)(23,54)(24,55)(25,56)(26,29)(27,30)(28,31)(57,86)(58,87)(59,88)(60,89)(61,90)(62,91)(63,92)(64,93)(65,94)(66,95)(67,96)(68,97)(69,98)(70,99)(71,100)(72,101)(73,102)(74,103)(75,104)(76,105)(77,106)(78,107)(79,108)(80,109)(81,110)(82,111)(83,112)(84,85)(113,200)(114,201)(115,202)(116,203)(117,204)(118,205)(119,206)(120,207)(121,208)(122,209)(123,210)(124,211)(125,212)(126,213)(127,214)(128,215)(129,216)(130,217)(131,218)(132,219)(133,220)(134,221)(135,222)(136,223)(137,224)(138,197)(139,198)(140,199)(141,189)(142,190)(143,191)(144,192)(145,193)(146,194)(147,195)(148,196)(149,169)(150,170)(151,171)(152,172)(153,173)(154,174)(155,175)(156,176)(157,177)(158,178)(159,179)(160,180)(161,181)(162,182)(163,183)(164,184)(165,185)(166,186)(167,187)(168,188), (1,204)(2,205)(3,206)(4,207)(5,208)(6,209)(7,210)(8,211)(9,212)(10,213)(11,214)(12,215)(13,216)(14,217)(15,218)(16,219)(17,220)(18,221)(19,222)(20,223)(21,224)(22,197)(23,198)(24,199)(25,200)(26,201)(27,202)(28,203)(29,114)(30,115)(31,116)(32,117)(33,118)(34,119)(35,120)(36,121)(37,122)(38,123)(39,124)(40,125)(41,126)(42,127)(43,128)(44,129)(45,130)(46,131)(47,132)(48,133)(49,134)(50,135)(51,136)(52,137)(53,138)(54,139)(55,140)(56,113)(57,142)(58,143)(59,144)(60,145)(61,146)(62,147)(63,148)(64,149)(65,150)(66,151)(67,152)(68,153)(69,154)(70,155)(71,156)(72,157)(73,158)(74,159)(75,160)(76,161)(77,162)(78,163)(79,164)(80,165)(81,166)(82,167)(83,168)(84,141)(85,189)(86,190)(87,191)(88,192)(89,193)(90,194)(91,195)(92,196)(93,169)(94,170)(95,171)(96,172)(97,173)(98,174)(99,175)(100,176)(101,177)(102,178)(103,179)(104,180)(105,181)(106,182)(107,183)(108,184)(109,185)(110,186)(111,187)(112,188), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,162,204,77)(2,161,205,76)(3,160,206,75)(4,159,207,74)(5,158,208,73)(6,157,209,72)(7,156,210,71)(8,155,211,70)(9,154,212,69)(10,153,213,68)(11,152,214,67)(12,151,215,66)(13,150,216,65)(14,149,217,64)(15,148,218,63)(16,147,219,62)(17,146,220,61)(18,145,221,60)(19,144,222,59)(20,143,223,58)(21,142,224,57)(22,141,197,84)(23,168,198,83)(24,167,199,82)(25,166,200,81)(26,165,201,80)(27,164,202,79)(28,163,203,78)(29,185,114,109)(30,184,115,108)(31,183,116,107)(32,182,117,106)(33,181,118,105)(34,180,119,104)(35,179,120,103)(36,178,121,102)(37,177,122,101)(38,176,123,100)(39,175,124,99)(40,174,125,98)(41,173,126,97)(42,172,127,96)(43,171,128,95)(44,170,129,94)(45,169,130,93)(46,196,131,92)(47,195,132,91)(48,194,133,90)(49,193,134,89)(50,192,135,88)(51,191,136,87)(52,190,137,86)(53,189,138,85)(54,188,139,112)(55,187,140,111)(56,186,113,110)>;
G:=Group( (1,15)(2,219)(3,17)(4,221)(5,19)(6,223)(7,21)(8,197)(9,23)(10,199)(11,25)(12,201)(13,27)(14,203)(16,205)(18,207)(20,209)(22,211)(24,213)(26,215)(28,217)(29,128)(30,44)(31,130)(32,46)(33,132)(34,48)(35,134)(36,50)(37,136)(38,52)(39,138)(40,54)(41,140)(42,56)(43,114)(45,116)(47,118)(49,120)(51,122)(53,124)(55,126)(57,176)(58,101)(59,178)(60,103)(61,180)(62,105)(63,182)(64,107)(65,184)(66,109)(67,186)(68,111)(69,188)(70,85)(71,190)(72,87)(73,192)(74,89)(75,194)(76,91)(77,196)(78,93)(79,170)(80,95)(81,172)(82,97)(83,174)(84,99)(86,156)(88,158)(90,160)(92,162)(94,164)(96,166)(98,168)(100,142)(102,144)(104,146)(106,148)(108,150)(110,152)(112,154)(113,127)(115,129)(117,131)(119,133)(121,135)(123,137)(125,139)(141,175)(143,177)(145,179)(147,181)(149,183)(151,185)(153,187)(155,189)(157,191)(159,193)(161,195)(163,169)(165,171)(167,173)(198,212)(200,214)(202,216)(204,218)(206,220)(208,222)(210,224), (1,32)(2,33)(3,34)(4,35)(5,36)(6,37)(7,38)(8,39)(9,40)(10,41)(11,42)(12,43)(13,44)(14,45)(15,46)(16,47)(17,48)(18,49)(19,50)(20,51)(21,52)(22,53)(23,54)(24,55)(25,56)(26,29)(27,30)(28,31)(57,86)(58,87)(59,88)(60,89)(61,90)(62,91)(63,92)(64,93)(65,94)(66,95)(67,96)(68,97)(69,98)(70,99)(71,100)(72,101)(73,102)(74,103)(75,104)(76,105)(77,106)(78,107)(79,108)(80,109)(81,110)(82,111)(83,112)(84,85)(113,200)(114,201)(115,202)(116,203)(117,204)(118,205)(119,206)(120,207)(121,208)(122,209)(123,210)(124,211)(125,212)(126,213)(127,214)(128,215)(129,216)(130,217)(131,218)(132,219)(133,220)(134,221)(135,222)(136,223)(137,224)(138,197)(139,198)(140,199)(141,189)(142,190)(143,191)(144,192)(145,193)(146,194)(147,195)(148,196)(149,169)(150,170)(151,171)(152,172)(153,173)(154,174)(155,175)(156,176)(157,177)(158,178)(159,179)(160,180)(161,181)(162,182)(163,183)(164,184)(165,185)(166,186)(167,187)(168,188), (1,204)(2,205)(3,206)(4,207)(5,208)(6,209)(7,210)(8,211)(9,212)(10,213)(11,214)(12,215)(13,216)(14,217)(15,218)(16,219)(17,220)(18,221)(19,222)(20,223)(21,224)(22,197)(23,198)(24,199)(25,200)(26,201)(27,202)(28,203)(29,114)(30,115)(31,116)(32,117)(33,118)(34,119)(35,120)(36,121)(37,122)(38,123)(39,124)(40,125)(41,126)(42,127)(43,128)(44,129)(45,130)(46,131)(47,132)(48,133)(49,134)(50,135)(51,136)(52,137)(53,138)(54,139)(55,140)(56,113)(57,142)(58,143)(59,144)(60,145)(61,146)(62,147)(63,148)(64,149)(65,150)(66,151)(67,152)(68,153)(69,154)(70,155)(71,156)(72,157)(73,158)(74,159)(75,160)(76,161)(77,162)(78,163)(79,164)(80,165)(81,166)(82,167)(83,168)(84,141)(85,189)(86,190)(87,191)(88,192)(89,193)(90,194)(91,195)(92,196)(93,169)(94,170)(95,171)(96,172)(97,173)(98,174)(99,175)(100,176)(101,177)(102,178)(103,179)(104,180)(105,181)(106,182)(107,183)(108,184)(109,185)(110,186)(111,187)(112,188), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,162,204,77)(2,161,205,76)(3,160,206,75)(4,159,207,74)(5,158,208,73)(6,157,209,72)(7,156,210,71)(8,155,211,70)(9,154,212,69)(10,153,213,68)(11,152,214,67)(12,151,215,66)(13,150,216,65)(14,149,217,64)(15,148,218,63)(16,147,219,62)(17,146,220,61)(18,145,221,60)(19,144,222,59)(20,143,223,58)(21,142,224,57)(22,141,197,84)(23,168,198,83)(24,167,199,82)(25,166,200,81)(26,165,201,80)(27,164,202,79)(28,163,203,78)(29,185,114,109)(30,184,115,108)(31,183,116,107)(32,182,117,106)(33,181,118,105)(34,180,119,104)(35,179,120,103)(36,178,121,102)(37,177,122,101)(38,176,123,100)(39,175,124,99)(40,174,125,98)(41,173,126,97)(42,172,127,96)(43,171,128,95)(44,170,129,94)(45,169,130,93)(46,196,131,92)(47,195,132,91)(48,194,133,90)(49,193,134,89)(50,192,135,88)(51,191,136,87)(52,190,137,86)(53,189,138,85)(54,188,139,112)(55,187,140,111)(56,186,113,110) );
G=PermutationGroup([(1,15),(2,219),(3,17),(4,221),(5,19),(6,223),(7,21),(8,197),(9,23),(10,199),(11,25),(12,201),(13,27),(14,203),(16,205),(18,207),(20,209),(22,211),(24,213),(26,215),(28,217),(29,128),(30,44),(31,130),(32,46),(33,132),(34,48),(35,134),(36,50),(37,136),(38,52),(39,138),(40,54),(41,140),(42,56),(43,114),(45,116),(47,118),(49,120),(51,122),(53,124),(55,126),(57,176),(58,101),(59,178),(60,103),(61,180),(62,105),(63,182),(64,107),(65,184),(66,109),(67,186),(68,111),(69,188),(70,85),(71,190),(72,87),(73,192),(74,89),(75,194),(76,91),(77,196),(78,93),(79,170),(80,95),(81,172),(82,97),(83,174),(84,99),(86,156),(88,158),(90,160),(92,162),(94,164),(96,166),(98,168),(100,142),(102,144),(104,146),(106,148),(108,150),(110,152),(112,154),(113,127),(115,129),(117,131),(119,133),(121,135),(123,137),(125,139),(141,175),(143,177),(145,179),(147,181),(149,183),(151,185),(153,187),(155,189),(157,191),(159,193),(161,195),(163,169),(165,171),(167,173),(198,212),(200,214),(202,216),(204,218),(206,220),(208,222),(210,224)], [(1,32),(2,33),(3,34),(4,35),(5,36),(6,37),(7,38),(8,39),(9,40),(10,41),(11,42),(12,43),(13,44),(14,45),(15,46),(16,47),(17,48),(18,49),(19,50),(20,51),(21,52),(22,53),(23,54),(24,55),(25,56),(26,29),(27,30),(28,31),(57,86),(58,87),(59,88),(60,89),(61,90),(62,91),(63,92),(64,93),(65,94),(66,95),(67,96),(68,97),(69,98),(70,99),(71,100),(72,101),(73,102),(74,103),(75,104),(76,105),(77,106),(78,107),(79,108),(80,109),(81,110),(82,111),(83,112),(84,85),(113,200),(114,201),(115,202),(116,203),(117,204),(118,205),(119,206),(120,207),(121,208),(122,209),(123,210),(124,211),(125,212),(126,213),(127,214),(128,215),(129,216),(130,217),(131,218),(132,219),(133,220),(134,221),(135,222),(136,223),(137,224),(138,197),(139,198),(140,199),(141,189),(142,190),(143,191),(144,192),(145,193),(146,194),(147,195),(148,196),(149,169),(150,170),(151,171),(152,172),(153,173),(154,174),(155,175),(156,176),(157,177),(158,178),(159,179),(160,180),(161,181),(162,182),(163,183),(164,184),(165,185),(166,186),(167,187),(168,188)], [(1,204),(2,205),(3,206),(4,207),(5,208),(6,209),(7,210),(8,211),(9,212),(10,213),(11,214),(12,215),(13,216),(14,217),(15,218),(16,219),(17,220),(18,221),(19,222),(20,223),(21,224),(22,197),(23,198),(24,199),(25,200),(26,201),(27,202),(28,203),(29,114),(30,115),(31,116),(32,117),(33,118),(34,119),(35,120),(36,121),(37,122),(38,123),(39,124),(40,125),(41,126),(42,127),(43,128),(44,129),(45,130),(46,131),(47,132),(48,133),(49,134),(50,135),(51,136),(52,137),(53,138),(54,139),(55,140),(56,113),(57,142),(58,143),(59,144),(60,145),(61,146),(62,147),(63,148),(64,149),(65,150),(66,151),(67,152),(68,153),(69,154),(70,155),(71,156),(72,157),(73,158),(74,159),(75,160),(76,161),(77,162),(78,163),(79,164),(80,165),(81,166),(82,167),(83,168),(84,141),(85,189),(86,190),(87,191),(88,192),(89,193),(90,194),(91,195),(92,196),(93,169),(94,170),(95,171),(96,172),(97,173),(98,174),(99,175),(100,176),(101,177),(102,178),(103,179),(104,180),(105,181),(106,182),(107,183),(108,184),(109,185),(110,186),(111,187),(112,188)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196),(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224)], [(1,162,204,77),(2,161,205,76),(3,160,206,75),(4,159,207,74),(5,158,208,73),(6,157,209,72),(7,156,210,71),(8,155,211,70),(9,154,212,69),(10,153,213,68),(11,152,214,67),(12,151,215,66),(13,150,216,65),(14,149,217,64),(15,148,218,63),(16,147,219,62),(17,146,220,61),(18,145,221,60),(19,144,222,59),(20,143,223,58),(21,142,224,57),(22,141,197,84),(23,168,198,83),(24,167,199,82),(25,166,200,81),(26,165,201,80),(27,164,202,79),(28,163,203,78),(29,185,114,109),(30,184,115,108),(31,183,116,107),(32,182,117,106),(33,181,118,105),(34,180,119,104),(35,179,120,103),(36,178,121,102),(37,177,122,101),(38,176,123,100),(39,175,124,99),(40,174,125,98),(41,173,126,97),(42,172,127,96),(43,171,128,95),(44,170,129,94),(45,169,130,93),(46,196,131,92),(47,195,132,91),(48,194,133,90),(49,193,134,89),(50,192,135,88),(51,191,136,87),(52,190,137,86),(53,189,138,85),(54,188,139,112),(55,187,140,111),(56,186,113,110)])
82 conjugacy classes
| class | 1 | 2A | ··· | 2G | 2H | 2I | 4A | 4B | 4C | 4D | 4E | ··· | 4L | 7A | 7B | 7C | 14A | ··· | 14U | 14V | ··· | 14AG | 28A | ··· | 28X |
| order | 1 | 2 | ··· | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 7 | 7 | 7 | 14 | ··· | 14 | 14 | ··· | 14 | 28 | ··· | 28 |
| size | 1 | 1 | ··· | 1 | 4 | 4 | 4 | 4 | 4 | 4 | 28 | ··· | 28 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
82 irreducible representations
| dim | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 |
| type | + | + | + | + | + | + | + | + | + | + | + | - | |||
| image | C1 | C2 | C2 | C2 | C2 | D4 | D4 | D7 | C4○D4 | D14 | D14 | C7⋊D4 | D28 | C4○D28 | D4⋊2D7 |
| kernel | C23.14D28 | C14.C42 | C2×C4⋊Dic7 | C2×C23.D7 | C14×C22⋊C4 | C2×C28 | C22×C14 | C2×C22⋊C4 | C2×C14 | C22×C4 | C24 | C2×C4 | C23 | C22 | C22 |
| # reps | 1 | 3 | 1 | 2 | 1 | 2 | 2 | 3 | 10 | 6 | 3 | 12 | 12 | 12 | 12 |
Matrix representation of C23.14D28 ►in GL6(𝔽29)
| 28 | 0 | 0 | 0 | 0 | 0 |
| 0 | 28 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 0 | 28 | 0 | 0 |
| 0 | 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 0 | 19 | 28 |
| 1 | 0 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 | 0 |
| 0 | 0 | 28 | 0 | 0 | 0 |
| 0 | 0 | 0 | 28 | 0 | 0 |
| 0 | 0 | 0 | 0 | 28 | 0 |
| 0 | 0 | 0 | 0 | 0 | 28 |
| 1 | 0 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 0 | 28 | 0 |
| 0 | 0 | 0 | 0 | 0 | 28 |
| 3 | 0 | 0 | 0 | 0 | 0 |
| 0 | 10 | 0 | 0 | 0 | 0 |
| 0 | 0 | 7 | 0 | 0 | 0 |
| 0 | 0 | 0 | 25 | 0 | 0 |
| 0 | 0 | 0 | 0 | 1 | 6 |
| 0 | 0 | 0 | 0 | 0 | 28 |
| 0 | 10 | 0 | 0 | 0 | 0 |
| 3 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 25 | 0 | 0 |
| 0 | 0 | 7 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 17 | 0 |
| 0 | 0 | 0 | 0 | 0 | 17 |
G:=sub<GL(6,GF(29))| [28,0,0,0,0,0,0,28,0,0,0,0,0,0,1,0,0,0,0,0,0,28,0,0,0,0,0,0,1,19,0,0,0,0,0,28],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,28],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,28,0,0,0,0,0,0,28],[3,0,0,0,0,0,0,10,0,0,0,0,0,0,7,0,0,0,0,0,0,25,0,0,0,0,0,0,1,0,0,0,0,0,6,28],[0,3,0,0,0,0,10,0,0,0,0,0,0,0,0,7,0,0,0,0,25,0,0,0,0,0,0,0,17,0,0,0,0,0,0,17] >;
C23.14D28 in GAP, Magma, Sage, TeX
C_2^3._{14}D_{28} % in TeX
G:=Group("C2^3.14D28"); // GroupNames label
G:=SmallGroup(448,487);
// by ID
G=gap.SmallGroup(448,487);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,224,253,120,254,387,18822]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^28=1,e^2=c,a*b=b*a,d*a*d^-1=a*c=c*a,e*a*e^-1=a*b*c,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations